python-pandas – data structures for “relational” or “labeled” data

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

This package contains the Python 2 version.

Package availability chart

Distribution

Base version

Our version

Architectures

Debian GNU/Linux 10.0 (buster)

0.23.3+dfsg-3

0.23.3-1~nd100+1

i386, amd64, sparc, armel, ppc64el

Debian GNU/Linux 11.0 (bullseye)

1.1.5+dfsg-2

Debian GNU/Linux 12.0 (bookworm)

1.5.3+dfsg-2

Debian GNU/Linux 9.0 (stretch)

0.19.2-5.1

0.22.0-2~nd90+1

i386, amd64, sparc, armel

Debian testing (trixie)

2.2.3+dfsg-5

Debian unstable (sid)

2.2.3+dfsg-5

0.23.3-1~nd+1

i386, amd64, sparc, armel

Ubuntu 16.04 “Xenial Xerus” (xenial)

0.17.1-3ubuntu2

0.19.2-1~nd16.04+1

i386, amd64, sparc

Ubuntu 18.04 “Bionic Beaver” (bionic)

0.22.0-4

0.23.3-1~nd18.04+1

i386, amd64, sparc, armel

Ubuntu 20.04 “Focal Fossa” (focal)

0.25.3+dfsg-7

Ubuntu 22.04 “Jammy Jellyfish” (jammy)

1.3.5+dfsg-3

Ubuntu 24.04 “Noble Numbat” (noble)

2.1.4+dfsg-7

Comments

blog comments powered by Disqus