python-mvpa2 – multivariate pattern analysis with Python v. 2

PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun).

While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets.

This is a package of PyMVPA v.2. Previously released stable version is provided by the python-mvpa package.

Reference:

Hanke, Michael, Halchenko, Yaroslav O., Sederberg, Per B., Hanson, Stephen José, Haxby, James V., Pollmann, Stefan (2009). PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7, . [Abstract] [DOI] [Pubmed]

Package availability chart

Distribution

Base version

Our version

Architectures

Debian GNU/Linux 10.0 (buster)

2.6.5-1~nd100+1

i386, amd64, sparc, armel, ppc64el

Debian GNU/Linux 9.0 (stretch)

2.6.0-1

2.6.5-1~nd90+1

i386, amd64, sparc, armel

Debian unstable (sid)

2.6.5-1~nd+1

i386, amd64, sparc, armel

Ubuntu 16.04 “Xenial Xerus” (xenial)

2.4.1-1

2.6.5-1~nd16.04+1

i386, amd64, sparc, armel

Ubuntu 18.04 “Bionic Beaver” (bionic)

2.6.4-2

2.6.5-1~nd18.04+1

i386, amd64, sparc, armel

Comments

blog comments powered by Disqus